

位相コントラスト法

・X線が物体を透過する時に生ずる屈折の偏移
・被写体とX線検出器が離れている
・医療用のX線管では幾何学的不鋭を考慮
・被写体とX線管球、検出器との距離を最適化
・X線の波長、焦点サイズ、撮影距離、被写体の 大きさ、に依存

乳房撮影装置への応用

- ・ 乳房撮影用のモリブデン管
 17keV程度の特性X線
 →位相コントラストが得られやすい
- ・ 焦点サイズ
 小焦点100 µ m
- ・ 被写体コントラストが低い
 写真では高コントラストが求められる

【デジタルシステムでのPCM】

被ばく線量の増加 →広いダイナミックレンジ →グリットを使用せず、直接X線を有効利用 得られる画像が実寸よりも大きくなる →実寸サイズへの縮小プリント

【検討項目】

デジタルPCMについて

- ■基本性能の把握
- ■管電圧特性
- ■線量特性
- ■出カコントラスト特性

【使用機器】

撮影装置:東芝メディカル製造社製 PCM乳房撮影装置

ファントム: ACR RMI社 156型乳房ファントム 京都科学社 ステップファントム

- 画像読取:KONICA MINOLTA社製 REGIUS PCM用試作プレート 画像出力:KONICA MINOLTA社製 DRYPRO DRYフィルム
- フィルム:Kodak社製 Min-R2000システム 自動現像機:Kodak社製 X-OMAT 5000RA

<mark>試料</mark> ~管電圧特性及び基本性能~							
ee	答案に(い)		佳占				
<u> </u>	日电广(KV)	10	<u></u>				
	24	1.0	入 +	1.3			
	32	1.0	入 *	1.5			
	02	1.0	~	1.0			
PCM	<u>管電圧(kV)</u>	拡大率	焦点	線量			
	24	1.75	/] \	SF同線量			
	28	1.75	/] \	SF同線量			
	32	1.75	/]\	SF同線量			
	RMI15	6ファントノ	中心濃				

試料	~線量特性	~		
PCM	管電圧(kV)	拡大率	焦点	線量
	24	1.75	/]\	SF×0.6
				SF同線量
				2mGy
				3mGy
	28	1.75	/]\	SF×0.6
				SF同線量
				2mGy
				3mGy
	32	1.75	/]\	SF×0.6
				SF同線量
				2mGy
				3mGy

試米	╡∼出カコン	ットラスト	·特性~	
PCM	管電圧(kV)	拡大率	焦点	線量
	24	1.75	小	SF同線量
	28	1.75	小	SF同線量
	32	1.75	小	SF同線量
	コントラ	ラスト: γ	3. 9	4. 7

【考察】

基本性能

PCMとデジタル画像の応用により画質を向上

鮮鋭度

拡大効果に加えエッジ効果により鮮鋭度が向上 エアギャップ相当の距離おくことにより、散乱線を除去 粒状度 縮小出力することで同程度の粒状度に戻る 粒状度はグリットを使用する密着撮影より良い

(一次X線のロスがない)

画質評価

管電圧依存性について、SFシステムは管 電圧の上昇とともにスコアが大きく低下したが デジタルPCMはゆるやかな低下であった。 デジタルPCMは高管電圧の必要な乳房に 対しての画質向上が期待される。

画質評価

線量依存性は、ほぼ2mGyより飽和状態となり、む やみに線量をあげても画質向上は望めない。

乳房厚に対して決めていた、SFの管電圧とmAsの 条件の見直しが必要と思われた。

出力コントラストでは γの上昇とともにスコアは上が らず、適度な処理が必要であった。

模擬腫瘤について

SFと比較してPCM画像は、繊維のスコアは上がったが、腫瘤の評価はほぼ同等であった。これは、 ACR156ファントムの擬似腫瘤の形が楕円形であるので、位相コントラストによるエッジ効果が小さいためだと考えられる。

【実験について】

位相コントラストによる効果とデジタル画像を 組み合わせることにより、画質の向上が図れる。

PCMのファントム評価は、デジタルの施設画像 評価基準をクリアしているが、さらに特徴を把握 し、良い画像を求めたい。

マンモグラフィによる画像診断

- 乳房の被写体コントラストは低い ←写真では高コントラストが要求
- ・ 微小な診断
 ←認識は容易 形態判定が要求される

今後の課題

- X線管球の改良
- 検出器の性能
- 画像処理
- ・ イメージャ用フィルムの性能
- モニター診断の基準

